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INTRODUCTION

Four portable cesium clocks and two single channel Global Positioning System (GPS)
timing receivers were deployed in Italy during October 1983 at the Naval Base in La
Spezia, onboard the Italian Navy hydrographic ship "Magnaghi", and at the Istituto
Elettrotecnico Nazionale (IEN) in Torino.

The experiment was a joint effort between the following U.S. and Italian agencies
and organizations: the NASA Goddard Space Flight Center (GSFC) with the support of
the Bendix Field Engineering Corporation (BFEC), the Italian Navy, the U.S. Naval
Research Laboratory (NRL), the U.S. Naval Observatory (USNO), the Istituto Elettro-
tecnico Nazionale (IEN) "G, Ferraris", and the Politecnico of Torino, Italy.

The timing data collected in this effort provided mutual synchronization between
the U.3. Naval Observatory and other international time-keeping institutions and
laboratories to within an accuracy of + 50 nanoseconds(ns).

In addition, the experiment provided an excellent opportunity to perform field

tests of portable cesium standards during actual trip conditions. Onboard the hydro-
graphic ship was an ensemble of three cesium clocks, which were intercompared via

an automated measurement system. Two external time references, Loran-C and GPS,

and one additional cesium standard were continuously available on shore, providing

a redundant and reliable reference time base. Similar portable clock and GPS data
was taken at the IEN, while performing a GPS synchronization for a period of one
week,

PURPOSE OF THE EXPERIMENT

The overall experiment was designed to test the positioning and navigation capabil-
ities of the GPS timing receivers developed by the Naval Research Laboratory (NRL)
for the NASA Goddard Laser Tracking Network (GLTN).
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To perform this experiment, a reliable and redundant time scale was set up onboard
the ship, and a back~up system on shore. This situation provided the opportunity
to perform simultaneously a timing experiment ideally divided into two parts, the
main objectives of the experimentation being:

1.) To test GPS timing receiver synchronization capabilities on a moving plat-
form, and to perform an intercontinental synchronization via GPS between
participating international timing laboratories in Europe and in the United
States.

2. To evaluate the performance of cesium portable clocks in the field.

SYNCHRONIZATION AND PORTABLE CLOCKS

The portable cesium c¢lock synchronization technique represents one of the most
accurate means to synchronize remote clocks via a transfer standard.

To perform a portable clock synchronization, the frequency offset of the cesium
portable clock with reference to a known time scale should be measured with great
accuracy; this will allow an estimate of the time position of the travelling clock
during the trip, with reference to the same time scale, after an initial time posi-
tion measurement has been made.

The behaviour of the portable clock during the trip is essential to obtain good
results. When the clock returns, a time closure measurement with the master

reference provides an estimate of how well the c¢lock behaved during the trip. If

an abnormal behaviour occurs, this can be classified into two categories: (1) a change
in the frequency of the travelling standard (fig. 1a), or (2) a change in its

time (phase jump) where the frequency before and after the trip appears to be the

same (fig. 1b).

Abnormal behaviour of a portable cesium clock can be caused by several factors, but
is mainly due to the random behaviour of the standard itself and by systematic
effects,

RANDOM BEHAVIOUR OF THE CLOCK

The random behaviour of the clock is primarily due to the standard's own noise pro-
cesses, leading to uncertainties in the determination of the frequency of the
oscillator over a certain time interval, or to small fluctuations in the phase of
the oscillator itself in a short time interval.

The error caused by the random behaviour of the clock can be reduced considerably
by carefully monitoring the clock parameters before the trip, and by implementing
various models of clock performance during the trip. It has been suggested to
carry two or more cesium standards on a trip, and monitor one against the other.

However, the statistical analysis of the clock should only be considered at the
level at which the systematic errors do not play a dominant role in contributing to
the total trip error. In other words, it is not useful to have a good statistical
model of the clock when the main error contribution is due to systematic effects.
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SYSTEMATIC ERRORS

Inaccuracies in a portable clock during a trip can be traced to such systematic
errors as temperature effects, acceleration and shock, power supply noise and/or
voltage spikes, magnetic field sensitivity, and others.

Until a complete study of systematic errors is made, it is suggested (and in several
cases it has already been done) to send a redundant set of 2 or more clocks, of
different manufacturer and type, on portable clock trips, along with a portable data
acquisition system, to allow a continuous intercomparison of the clocks for the

trip duration.

In addition, clock reliability should be addressed by careful evaluation of clock
performance, looking for the weak points of each design and suggesting ways to im-
prove the confidence in the operation of the clock and clock subsystems (i.e., power
supply modules).

MEASUREMENT SYSTEM CONFIGURATION

During the month of October 1983, personnel from the NASA, the NRL, and the BFEC
performed a joint experiment with the Italian Navy and the IEN, with the aim to
test the navigation capabilities of the GPS timing receivers onboard a hydrographic
ship of the Italian Navy (fig. 2). This provided the opportunity to perform field
tests of cesium standards during actual trip conditions,

Three portable cesium standards were available onboard the ship. One was provided
by the IEN (HP5061 - (31230), one by the USNO (HP5061, opt. 004 - CS1809) and the
other by the NASA (FTS4010 - CS107). These three clocks provided redundant clock
information during the experiment (fig. 3).

An automated measurement system was installed and operated onboard the ship for the
duration of the experiment (fig. 6).

External time references were continuously available on shore, such as a LORAN-C
timing receiver, TV links, an additional GPS timing receiver and one cesium stan-
dard, providing a reliable clock system that was mainly used as a backup to the
main timing system onboard the ship.

INSTRUMENTATION ONBOARD THE SHIP

The measurement system is shown in fig. 4 and 5 and a block diagram is shown in
fig., 6. An HP-85 computer acts as the gystem controller. The three cesium stan-
dards are intercompared via an HP59307 switch (shown in fig. 5 on top of the HP5370
counter), using an HP5370 counter in the time interval mode (20ps resolution).

The 1 pps signal from the USNO standard (CS51809) provides the master reference start
signal to the counter. In this way, the 1 pps pulses and the 5 MHz signals of the
cesium standards are intercompared.
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A Time Systems Technology (TST model 6459) clock (fig., 4) was used as a precise 1
pps distribution amplifier. The same figure shows a 5 MHz distribution amplifier
and the two GPS timing receivers onboard.

An HP Interface Bus (HPIB) compatible digital multimeter was used to monitor (via a
standard thermistor) the ambient temperature, while an HPIB compatible clock
(HP59309) provided time tags to the data.

The HP5370 and the other instruments were controlled by the HP-85 via the HPIB,
The data was collected approximately every 30 minutes and stored on tape for
further processing.

In addition, manual readings were taken between the 1 pps signals. Phase monitor-
ing of two 5 MHz signals was provided by a Tracor phase comparator and recorder
unit (fig. 3).

The 1 pps and 5 MHz signals generated by each clock were compared against the 1 pps
signal of the reference cesium (C31809). Each data consisted of the average and
standard deviation of ten time interval readings between the 1 pps reference signal
and the signal being measured (fig. 6). Both the average and the standard devia-
tion of each measurement was stored on tape, along with the time of the measurement
and the ambient temperature.

The system failed to operate several times, mainly because of electrical power
interruptions (the system had no battery backup). Power interruptions occurred
when switching from onboard to shore power and vice versa, and when power was
redistributed to balance the load on various distribution lines. Power interrup-
tions were the cause of one of the power failures on C3107, the other was an un-
plugged power cable.

As a consequence of the power failures, the computer stopped. The auto-start provi-
sion was not enabled since the time-tagging digital clock needed to be reset to the
proper time, which required operator intervention.

Inproper setting of the digital clock (perhaps caused by noise or spikes on the
power line) resulted in uncertain time tagging of the data on October 6 and 7. Even
though this data cannot be referenced to pre or post data, it was used to monitor
the frequency of the clocks during that period (see tables I, II, and III).

BACK-UP TIMING SYSTEM ON SHORE

The back-up timing system (fig. 7) was installed by the IEN on shore, in a building
inside the Naval Base complex. A block diagram of this system is shown in fig. 8.

The local time base was obtained from a HP5061A (C3609) cesium standard. External
references included a TV link to UTC (IEN), while LORAN-C and GPS measurements were
provided by an Austron 2005 LORAN-C timing receiver and a second NRL GPS time trans-
fer receiver, installed on shore from October 4 to October 8 and later installed
onboard the ship for redundant operation.
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The measurement system included a HP5345A time interval counter (2ns measurement
resolution in the time interval mode), a HP59307 switch, and a HP9815 desk top cal-
culator, which acted as the system controller and data logger. The measured data
was stored on tape.

CESIUM CLOCKS PERFORMANCE

The reference cesium standard (CS1809 -~ HP5061A opt. 004) performed very well, with
a 120 ns closure error versus UTC(USNQO) after the 17 day trip.

One of the two cesium standards onboard (C81230 -~ HP5061A) experienced a phase
shift that will be discussed later. The other (CS8107 - FTSL4010) had two power
failures onboard, the first time due to an unplugged connector, and the second time
during a switch between shore to onboard power while changing the battery pack.

The frequency of each clock (CS1230 and CS107) versus the reference clock (CS1809)
was estimated from the 1 pps comparisons over the measurement intervals listed in
table I, The fractional frequency offset was computed as the slope of the fit
(line) to the phase data. The standard deviation of the fit and the standard devia-
tion of the slope (frequency) were computed and are given in table II (CS107) and
table III (C31230). The uncertainty in the fractional frequency offset estimate

was weighted for the number of data points used in the fitting process by using the
Student t-distribution to correct the standard deviation of the slope.

The results of the analysis for C3107 are summarized in fig. 9. The vertical axis
is the fractional frequency offset between C31809 and CS107, the horizontal axis is
time (days, October 1983), Each frequency estimate is plotted as a horizontal bar
extended over the measurement period, The height of the box around the bar repre-
sents the uncertainty of the frequency offset determination over the same period
(see legend, fig. 9). The asterisks mark the time of the power faillures., Since
the vertical scale is 10ns/day per division, this is roughly equivalent to 1X10-13
per vertical division.

During the first week the behaviour of C3107 was excellent, then there was the first
power failure on the morning of October 8 and the second one on the morning of the
10th., After a warm-up period of approximately two days, the frequency returned to
about the original value. The lower frequency on day 11 is unexplained. Notice,
however, the large uncertainty.

This change does not appear so dramatic in a phase plot over the same period (fig.
10). Fig. 10 shows the phase behavior of (3107 versus CS1809 on October 10 and 11,
1983, when CS107 was just recovering after the two power failures. The change in
slope on October 11 is evident. In the plot to the right (fig. 10) the line fitted
over the measurement period is superimposed on the data. The average slope tends
to be slightly higher than the slopes estimated on partial intervals covering the
same period of time, This is caused by non-linear behaviour of the data,

The average fractional frequency offset between the two clocks after the power fail-
ure was then 198 +/- 2.6ns/day (on days 10 and 11); during the first week (on days

5 and 6, fig. 11) the average slope was 208.7 +/- 2.3ns/day. The difference was
only 10.7ns/day (+/- 5.6ns/day in the worst case), roughly 1 X 10-13 in frequency
difference before and after the power failure.
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CS1230 was noisier than CS8107 and showed a more random phase behaviour (fig. 12).
There is a definite change in the frequency of C31230 from October 4 to Detober 5
and 6 (fig. 12)., The random walk of CS1230 is evident in fig. 13 (October 10 to
12); however, the long term performance was satisfactory.

On the morning of October 7 there was a phase shift in CS1230 (see fig. 14, top
plot). The magnitude of the phase jump was roughly 100ns in less than 4 hours.,

The bottom plot in fig. 14 shows the simultaneous temperature recording. There was
a large temperature inversion, due to the turn-on of the ship's air conditioning
equipment, at the time when the phase shift started. The absolute temperature was
not very high (about 76© F)., The slope on October 6 and 7 was about 121 +/- 2.1
ns/day. After the shift, the average slope was about 129 +/- 3.U4ns/day. The shift
in phase does not appear to have affected the frequency of the cesium.

Table IV presents a summary of the comparison of the two cesiums (C3107 and C31230)
versus the reference C31809. The average fractional frequency offset is the arith-
metic mean of the frequency offsets shown in tables II and IIT, with two data points
removed on days 8 and 10, where an external power failure interrupted the operation
of CS107. One data point was removed on day 7 for the large phase jump in CS1230
which affected the normal behavior of the clock. The standard deviation shown is
the standard deviation on the above computed average.

TEMPERATURE ANALYSIS

The purpose of the temperature measurements was to monitor frequency changes due to
temperature variations in the field, These can be monitored against a remote refer-
ence time scale or against a local standard, but are unaffected by the same tem-
perature changes (absolute frequency dependence on temperature). Alternatively,
given an ensemble of clocks exposed to the same temperature variations, frequency
changes in one standard versus the others can be monitored (relative frequency de-
pendence on temperature).

The main limitation that was found in carrying on such measurements was that, in
both cases, the frequency changes due to short term temperature variations are the
same order of magnitude or less than the uncertainty in the short term evaluation
of the frequency of the cesium standard. In this experiment, it was not possible
to find any substantial correlation between frequency changes and short term tem-
perature variations in the field. Moreover, external references and existing time
transfer links do not provide enough accuracy to monitor short term frequency chan-
ges.

SYNCHRONIZATION LINKS AVAILABLE DURING THE GPS EXPERIMENT.

Figure 15 shows the various synchronization links that were available during the
experiment.

Two time scales were used as a reference: UTC (USNO) and UTC(IEN). Both are report-

ing to the Bureau International de l'Heure (BIH) and their. relative positions can
be obtained from the BIH report. As a direct link, two systems were available, in
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addition to two GPS timing receivers: (1) Transit Time Transfer receivers (FI5 T-
200), located at the IEN and at the USNU, provided 10 to 25 microseconds accuracy
in time transfer, and (2) LORAN-C, provided indirect synchronization across the
Atlantic Ocean of 1 to 10 microseconds.

In contrast, the GPS timing receivers provided time comparison of remote clocks
with an accuracy of 50 to 100ns between the USNO, the ship, the La Spezia harbour
and the IEN.

To have an independent synchronization link between Lz Spezia and the IEN in Torino,
one LORAN-C timing receiver was installed by the IEN on shore. This provided syn-
chronization to better than 100ns, and an additional, independent reference to UTC
(USNQ), even if with less certainty.

Moreover, to provide a more precise synchronization between the IEN and La Spezia,
the IEN personnel set-up a TV measurement system, taking daily readings at 0900Z at
IEN and La Spezia, with an estimated accuracy between 10 and 50ns.

In this way, it was possible to insure accuracy, reliability and redundancy to the
clocks in the field, while referencing them continuously to existing time scales.

As shown in table V, there is a wide spread of accuracies availlable from existing
systems, but no one system provides better than 10 to 50ns for compariscn of remote
clocks. Local (direct) time interval readings between cesium clocks usually have
an uncertainty of 1 to 10ns within a 1 day period, equivalent to the typical noise
floor of a good cesium standard.

TEMPERATURE BEHAVIOUR

Fig. 16 shows typical plots of temperature versus time during the experiment. The
temperature onboard was not controlled, except for a manually operated air con-
ditioning system; the thermistor probe was suspended above the ensemble of the three
clocks.

The chart shown in fig. 17 presents the temperature variations onboard the ship,
The horizontal bar extended over the measurement period is the average temperature
over the same period. The height of the box around the bar represents the standard
deviation of the average. Dot and cross symbols indicate the minimum and maximum
temperature recorded within each measurement period.

As shown in table VI, (which presents a summary of the temperature measurements),
despite large short term temperature variations, the average temperature during the
experiment was fairly constant (around 70° Fahrenheit). The largest standard devia-
tion is 5.89 Fahrenheit, however the average standard deviation is only 2.6° Fahren-
heit.

Short term temperature variations do not seem to affect the behaviour of portable
cesium clocks, at least to increase substantially the phase error at a measurable
level,

A redundant set of portable clocks traveling together will certainly improve the
reliability, but not necegsarily the accuracy of the synchronization.
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TIME TRANSFER USING GPS RECEIVERS ONBOARD A MOVING PLATFORM

The primary objJective of the synchronization experiment was to evaluate the time
transfer capability of a single channel C/A Code GPS timing receiver while onboard
a moving platform.

THE NAVSTAR GLOBAL POSITIONING SYSTEM

NAVSTAR GP3 is a tri-service Department of Defense (DOD) program. The first GPS
satellite flown was The Navigation Technology Satellite (NTS-II) which was designed
and built by NRL personnel. GPS will provide the capability of very precise instan-
taneous navigation and transfer of time from any point on the Earth. GPS comprises
three segments: the Space Segment, the Control Segment and the User Segment. The
phase TIT Space Segment will consist of a constellation of 18 to 24 satellites, six
to eight in each of three orbital planes. The satellite orbits are nearly circular
at an altitude of about 20,000 km and inclined 55° to the equator. The period is

one half of a sidereal day, resulting in a constant ground track, but with the satel-
lite appearing % minutes earlier each day.

Each satellite transmits its own identification and orbital information contin-
uously. The transmissions are spread spectrum signals, formed by adding the data
to a direct sequence code, which is then biphase modulated onto a carrier. At the
present time, the control segment consists of a Master Control Station (MCS) and
four monitor stations.

The monitor stations colleect data from each satellite and transmit to the MCS. The
data are processed to determine the orbital characteristics of each satellite, and
the trajectory information is then uploaded to each satellite once every 24 hours
as the spacecraft passes over the MCS. The user segment consists of a variety of
platforms containing GPS recelvers, which track the satellite signals and process
the data to determine position and/or time by simultaneous or sequential reception
of at least four satellites.

GPS TIME TRANSFER RECEIVER (TTR)

As an outgrowth of the NTIS timing receiver development in 1977 by the NRL and the
GSFC, a joint effort was started in 1979 to develop GPS TTR's using signals radiated
by the GPS satellites. In support of the GSFC Crustal Dynamics Program, the GPS
TTR's were designed for use in the GSFC Transportable Laser Ranging Network, which
requires submicrosecond timing for correlation of highly accurate satellite track-
ing data with time.

The capabilities of the receiver are being expanded, mainly through software mod-
ifications, for the following reasons:

o Demonstrate the position location capabilities of a single channel receiver
using the GPS C/A code.

0 Demonstrate the time/navigation capability of the receiver onboard a moving
platform, by sequential tracking of GPS satellites.

o Develop a timing receilver capable of worldwide synchronization from a moving
platform.
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frequency of 1575 MHz. The receiver uses the C/A code only (1.023 MHzj,
this code to within 3% of a chip (30ns). The receiver has the capabili
satellites throughout their doppler range from horizon to horizon, amnd
any GPS satellite by changing the receiver internal code. Operator inbe
the receiver is provided by a keyboard and CRT display, The time data !
disks and can also be ocutput to an external printer/computer via a 581
interface (fig. 19).

TIME TRANSFER METHOD

The GPS TTR's (fig. 4) installed onboard the ship were driven directly by
ence cesium standard CS1809. The time transfer was obtained as part of
sional navigation solution (see ref. 1), solving for latitude, longinuds,
speed of the ship, and time. Time here refers to the difference valweon the
system time and the local clock.,

The time solution was usually obtained over a 30 minute lategration i
surements were gathered from 3 to 5 NAVSTAR satellites. The time bLransie
were compared with the estimated position of CS1809 (used as the lozal time refer-
ence in the synchronlization).

The plot shown in fig. 20 presents the results of the time transfer onboay
moving ship. The square symbols represent the time difference betwasu I7
and C31809 via the GPS solution. The crosses represent the same Jiflor:
estimate the position of the portable clock CS1809 with reference hHo 1t .
error bars represent the uncertainty in the estimated clock position in wike.

Except for two large discrepancies (around 200ns) on October 5 {day 278; and
October 10 (day 283), the average accuracy was around 100ns.

RESULTS OF THE SYNCHRONIZATION AT THE ISTITUTO ELETTROTECNICCG NAZLIGNALL | Lil).

From QOctober 13 to October 19, identical GPS receilvers were Iinstalled 2t vns
facilities (fig. 22) in Torino, to perform a final synchronization via the o

The two GPS receivers (see the block diagram in fig. 21) were driven by the TEN
master clock (An HP5061A, opt. 004, cesium standard), that is part of an ensemble
of commercial cesium clocks kept in an underground vault (fig. 22).

The four clocks participating in the navigation experiment (C51809, CS107, G21230
and CS609, the last being the one installed on shore at La Speria) were conbinucus-
ly monitored against each other and against UTC(IEN) for one week.

In addition, measurements via GPS were carried on by temporarily driving ths re-
ceivers with the portable clocks CS107 and CS1809, to check the time positicn of
the traveling clocks with reference to UTC(USNQ).

TIME TRANSFER METHOD VIA GPS FOR A STATIONARY RECEIVER

The major objective of a satellite time transfer receiver is to determine preciss
time differences between a given satellite and a local ground clock. Preclss bLime
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can then be obtained between the space vehicle (3V) and a single remote ground sta-
tion clock or hetween the SV and any number of remote statlons. The remote sites
could then be synchronized among themselves (fig. 18).

To perform a satellite time transfer with GPS, pseudo-range measurements are made
that consist of the propagation delay in the signal plus the difference between the
satellite clock and the ground station receiver reference clock. Data from the
navigation measage contain the satellite clock information and the satellite
ephemeris, which allows one to compute the satellite position. Since the position
of the satellite and of the ground station are known, the computed propagation de-
lay can be subtracted from the pseudo-range and then corrected for the GPS time
offset, to determine the final result of ground station time relative to GPS time,
which can be referenced to the USNO.

If two ground station clocks are synchronized to GPS time, the results can be sub-
tracted to obtain the time difference between the ground station clocks. This can
be done at any time, but best results are obtained when data is taken simultaneously
by each ground station from the same satellite (common view), since any error con-
tributed by the satellite clock is cancelled when the data is subtracted.

The GPS time offset, that i1s the difference between GPS time and UTC(USNO), can be
obtained directly in real time as a part of the information broadcast by each
satellite.

However, the synchronization results can be improved (as will be shown later), if
the difference between UTC(USNO) and GPS time is measured simultaneously or nearly
simultaneously (within a few hours) by a GPS time transfer receiver operated at the
USNO. This data is made available by the Naval Observatory.

The Phase I GPS time is maintained at the Vandenberg MCS using a cesium oscillator.
The Phase III GPS time is planned to be referenced from the MCS to the USNO Master

Clock. The final results obtained from a single-frequency receiver, will contain a
small error due to the ionospheric delay which may be modeled and corrected.

Fig. 24 shows the time difference between UTC(USNO) and CS107 measured at the IEN.
C3107 was directly driving one of the GPS receivers; the asterisks show the esti-
mated position of CS107 with reference to UTC(USNO). NAVSTAR 5 was the satellite
used in the time tranafer.

The difference between GPS time and UTC(USNO) was obtained in real time from the
navigation message transmitted by the =atellite.

When the same difference between GPS time and UTC(USNO) was obtained via direct
measurements carried on almost simultaneously at the Naval Observatory, the results
show a better agreement between the predicted clock position and the GPS time trans-
fer, as shown in fig. 25.

Fig. 26 shows the time difference between UTC(USNO) and CS1809, the latter driving
one of the GP3 timing receivers at the IEN, Again, the difference between GPS time
and UTC (USNO) was obtained from the navigation message. An offset is clearly

visible between the estimated clock position (asterisks) and the GPS time transfer
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indicated by the number 5, indicating NAVSTAR 5. However, if the measurements carried
on at the Naval Observatory are used in place of the prediction broadcasted in real
time by the satellite, again the offset disappears (fig. 27).

Fig. 28 presents a summary of the time transfer between the U3SNO and the IEN., The
asterisks show the difference between UTC(USNO) and UTC(IEN) via the portable clock
references. The numbers plotted identify the time transfer obtained via a particular
NAVSTAR satellite (number 3, 4, 5, 6 and 8). Again, the difference between UTC(USNO)
and GPS time was obtained in real time from the navigation message. When the direct
measurements at the Naval Observatory are used to evaluate the difference between

the USNO and GP3 time, the time transfer via GPS shows a better agreement with the
portable clock data (fig. 29). The accuracy of estimated time position of the
portaible nlocks was within 50 to 100ns for the days shown.

This experiment proved that the time transfer using NRL GPS timing receivers can
achisve a woriiwide, reliable accuracy within 50 to 100ns, which is well within
the requirements for the synchronization of the NASA Laser Tracking Network.
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Fig, 5 - GPS time transfer receivers and data
acquisition system (bottom)
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DATA FILE - TIME COVERAGE

DATA FILE DAY (October)  Start time (Z) Stop time (Z)
DATAL 4/5 1804 0325
DATAZ 5 0712 1356
DATA3 5/6 1441 0012
DATA4 6/7 1253 0048 (*)
DATAS 7 0247 1707 (*)
DATA6 8 1145 1803
DATAT 10 0309 1431
DATAS 10/11 1630 0743
DATAS 11/12 0746 0133

MOTE: (*)} - Uncertain time tagging

TABLE 1
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PORTABLE CLOCKS INTERCOMPARISON
€S 1809 - CS 1230

€S1809-Cs1230

(us)
T ¥
t
i+
~2.388 | "
-+ +
+++ +
-2.408 | K
i ¢
o
+ +
-2.428 R
i+
~2.448 1+t +
ot
oy
-2.468 ' 5 t } =3
1227 1656 2125 0154 0623 1052
OCT 6 ocT 7
Slope = 121.9 + 2.1 ns/day
Temp. (F)
1
74.00 71 + +
.'
+ 4
72.13 1 o
b4
70.26 4
+
+
68.39 -~*++
$
4+ 4+
52 J,M.M“ ’;‘*qu”f :+*+4.+++ :+ 1. J
1227 1656 2125 0154 0623 1052
OCT 6 0cT 7

AVERAGE TEMPERATURE = 69.2 degrees (F)

F1G. 14 INTERNATIONAL TIME TRANSFER AND PORTABLE CLOCK EVALUAT
USING GPS TIMING RECEIVERS OCK EVALUATION
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CLOCKS STATISTICS TABLE

——— v — o ——  —— " T ki i T

*

AVERAGE FRACTIONAL FREQUENCY OFFSET = 198.9 ns/day

-13
STANDARD DEVIATION = 12,50 ns/day = 1.4 10

*

*

1

MAXIMUM FREQUENCY OFFSET = 207.6 ns/day

* MINIMUM FREQUENCY OFFSET

1]

168.0 ns/day

* RANGE (MAXIMUM - MINIMUM) = 39,6 ns/day

CS 1809 - €S 1230

a*

AVERAGE FRACTIONAL FREQUENCY OFFSET = 129.8 ns/day
(1 point filtered)

-13
STANDARD DEVIATION = 40.67 ns/day = 4.7 10

*

* MAXIMUM FREQUENCY OFFSET

194.8 ns/day

*

MINIMUM FREQUENCY OFFSET

78.5 ns/day

* RANGE (MAXIMUM - MINIMUM) = 116.3 ns/day

i LAl ——

($) - Days Oct. 8 and 9 were not considered (two power failures)

TABLE IV
313
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* *
* SYNCHRONIZATION LINKS CAPABILITIES *
* *

*****************************************

Link Expected accuracy Comments
PORTABLE 10-100 ns Degrading with
CLOCKS elapsed time
GPS RECEIVERS 50-100 ns Worl dwide
LORAN-C 100 ns Local (between
IEN and La Spezia)
LORAN-C 1-10 us Intercontinental
(between IEN and USNO)
TV 10-50 ns Local (between
IEN and La Spezia)
TRANSIT 10-30 us Worl dwide
CS CLOCKS 1-5 ns Local (within the
INTERCOMPARI SON same laboratory)
TABLE V
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Fig. 23 - Jnderground clock vault at LEN
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QUESTIONS AND ANSWERS

MR. JOHNSON:

Andy Johnson, Naval Observatory. Could that thirty meters be reduced by
repeated observations over several days from the G.P.S.?

MR. DETOMA:

Yes. As was shown yesterday, the positioning accuracy is much better

than the navigation accuracy. This is for a lot of reasons. Also, not
only for inaccuracy of the measurement itself, but also for the reason

to maintain a straight course of the ship during the period of time between
thirty minutes and one hour.

So you can expect an improvement in the order of magnitude, well,
probably not in the order of~--but at least three times when you perform
the synchronization without knowing your position in a fixed site. The
results I presented at the I.E.N. were obtained by using the coordinates
that were given in the WGS5-72 System. But, as was shown yesterday, they
were not significantly different from the coordinates obtained from the
positioning solution from the receiver.

They were different, if T remember, around ten to fifteen meters maximum
in longitude, and less than ten meters in latitude. 1In average, they were
less than ten meters in absolute position. So you can expect almost as
good result as was presented here, in a fixed position; but for the time
synchronization aboard the ship, we were talking about synchronizing clock
while the ship was moving, which is a completely different environment.
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